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SUMMARY

The analysis of resonant satellite orbits has been pursued for 1B years,

and has led to the most accurate valves available for lumped geopotential har-

monics of the relevant orders. The basic theory for the resonance effects was

developed in the 1960s, but the detailed application of the technique calls for a

systematic notation and for the evaluation of two subsidiary functions, namely

F, a function of the orbital inclination, and G , a function of the eccentric-

ity. The present paper sets out explicitly the variations in inclination and

eccentricity produced by relevant harmonics at the most comon resonances (15:1,

14:1, 16:1, 29:2 and 31:2), using the notation that has become standardized in

recent years. The paper also gives appropriate expressions for calculating F

and G , with a new Fortran program GQUAD for evaluating G
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I INTRODUCTION

The orbit of an Earth satellite is in resonance with the gravitational

field when the track of the satellite over the Earth repeats after an integral

number of revolutions. Daily repetitious give the strongest effects, but 2-day

repetitions are also of interest. A theory for such resonant orbits was devel-

oped in the late 1960s by Allan - and has been much used in analysing orbits

that experience resonance as they decay under the action of air drag. The

analyses have yielded values of lumped geopotential harmonics of relevant order,

and these values are usually of better accuracy than can currently be achieved by
4

any other method. The first such analysis, by Gooding in 1973, treated the

15th-order resonance of Ariel 3, and the orbital resonances of about 35 other

satellites have subsequently been analysed, to determine lumped harmonics,

chiefly those of order 14, 15, 16, 29, 30 and 31: from these analyses individual

* harmonic coefficients have been evaluated for orders 14, 15, 16 and 30 - see

Refs 5 to 7 and the papers referred to therein. Nearly always it is the orbital

inclination i and eccentricity e that have been analysed.

Allan's theory is in a generalized format, and when analysing specific

resonances it is necessary to have a systematic notation and to decide how to

evaluate the functions F and G that arise. The present paper gives explicit

forms for the rates of change of inclination and eccentricity at the resonances

most frequently analysed. (The expressions are largely from a list that has been

used in manuscript since 1974.) The evaluation of F is discussed and a useful

recurrence relation is given. A Fortran program for the evaluation of G is

listed, together with series expansions suitable for small enough e

2 STANDARD NOTATION

A satellite orbit is said to experience 8:a resonance when, loosely

speaking, the ground track repeats after B revolutions and a days. Thus

15:1 resonance, also known as 15th-order resonance, implies that the track

repeats daily, after 15 revolutions. Similarly, 29:2 resonance occurs when the

track repeats every 2 days, after 29 revolutions. Diagrams showing the orbital
3

periods and semi-major axes for exact resonance have been given by Allan
3
.

The longitude-dependent part of the geopotential at an exterior point

(r,e,A) can be written ast P (cos ) N IUC, cos m X + Lm sin m .%

L-2 m-1

_.. .

I _____



where r is the distance from the Earth's centre, 6 is co-latitude, A is

longitude (positive to the east), v is the gravitational constant for the

Earth (398600 a 3/s2 ), R is the Earth's equatorial radius (6378.1 kcm),
Pm(cos 0) is the associated Legendre function of order m and degree X , and

C and S are the normalized tesseral harmonic coefficients. The normaliz-

ing factor Ntm is given by

N2  2(21 + I)( - m)!

Xm (Z+m) , (2)

when m > 0 .

The variations in the orbital elements for near-resonant orbits depend

primarily on the resonance angle 0 defined by

S= a(w + M)+8(fl-v) , (3)

where w is the argument of perigee, H the mean anomaly, 2 the right ascen-

sion of the ascending node and v the sidereal angle. Exact resonance occurs

when $ 0 , and in practice the effects of resonance are usually significant

when $his between -10 and +10 deg/day.

The general term UAm , say, in equation (1) may be written in the form

fIm Ra cqa" 9, qim . tp-0 q=--

where a is the semi major axis, R denotes 'real part of', j = V'T and the

quantities F, G, y, p and q will be discussed later. With this notation, it

can be shown that the rate of change of inclination i caused by each pertinent

pair of coefficients, C and SIM V near B:a resonance, is given by3

di = n(l - e 2) R G (kcos i-m) £[j- (C - jf.m) exp{j(r - qw)
dt sin i (a 5 Ff.p Ypq Am-

......(5)

where n - M , and e is the eccentricity of the orbit.

00
The indices y, k, p and q in equation (5) are integers, with y taking 9

the values 1, 2, 3,... and q the values 0, ±1, ±2,.... The equations linking

9, m, k and p are:
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k ya-q (6)

= k + 2p j
For a specific resonance, with a and 8 known, the choice of y deilnes the

relevant value of m (and y = I is nearly always domirant); the choice of a

particular q then defines k (with q = 0 or q - ±1 nearly always dominant).

For each chosen pair of values of (y,q) there is a range of legitimate values

for I , defined by the two requirements that I > m , from equation (1), and

that I - k is even, from the last of equations (6). (Also I > k , but this is

nearly always weake- than t > m .) Thus (assuming k < m), the lowest possible

value of I , 10 say, is either m or m + I , and to, 10 + 2, 10 + 4,

then all contribute to di/dt . As t - k must be even,

t = m if m- k is eveni (7)

=0 f m + I if m -k is odd

For near-polar orbits the A - I0 term in di/dt is usually the largest; as

the inclination decreases, however, higher-degree terms tend to dominate.

We now turn to the two symbols in equation (4) that have not yet been

defined. The first, Ft , is the normalized inclination function given by

- ( + k - k) (cos j i)2t-m+k-2 (sin Ii) m- k + 2 a
Igm p 2P -P)! k)( m - )

....... (8)

where ( denotes the usual binomial coefficient n! and the sumtion

wh re (n - r)!rI n h unto

is over all values of a from max(O,k-m) to min(I-m,I+k) . (Note that if m

is large, > 10 say, it is most unlikely that terms with Iki > m will arise:

thus the summation is nearly always from 0 to X - m .) When .i m,

equation (8) takes the simple form

= {2(2m+ I)1}1 (Cos i)m+k(sin i)
m- k

;(

el - P),
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but in general there are many terms in the series, and F is best evaluated by

means of a recurrence relation , as explained in section 6.

The second of the symbols Gp , is a function of eccentricity defined by
8 pq .- I,kKaula , and is the same as the Hansen coefficient Xk+q to be found in the

textbooks of celestial mechanics (eq Ref 10). As G is of order and

e is usually small in the resonances analysed, values of q greater than 2 are

rarely significant in practice. Section 7 describes methods for Lhe accurate and

approximate evaluation of G pq *

The same functions F and G arise in the equation for the rate of change

of eccentricity due to a relevant pair of coefficients, Cm and S9m near

$:a resonance. From equation (58) of Ref 3, we have:

de -1 0 e2 )')(m . pGpq (k q(-m+2(Rm - S)
d--ti ne (1-e ( ae) - i_

x exp{j(y( - qw)}] (10)

3 TWO NEW SYMBOLS

To save space, we introduce new symbols for two quantities that are

required throughout sections 4 and 5.

First, we write

B n(i - e (1)

to abbreviate the multiplying factor that applies to both di/dt and de/dt

Second, we write
H = C tm -jSqm (12)

the symbol H being intended to signify a (combined) harmonic coefficient.

Logically, H should have the suffix Im , but this is dropped because Z and

m are the same as in IMP and these are always given explicitly. With this

notation, the real part of the quantity in square brackets in equation (5) may be

expressed, for I - m , as

-0RjH exp j(yO - qw)] = -{C sin(yo - qw) - cos(yo - qw)} (13)

PI
ti t

r~
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and, for Z. m + I as

61jH exp j(yI - qw)) si=y -w cos(y' qw)} (14)

4 EXPLICIT FORMS FOR THE TERMS IN di/dt

For a specified resonance, the terms with (y,q) - (1,0) arc usually the

most important in equation (5), followed by the terms with (y,q) = (2,0), (1,-I)

and (],I). All these terms, and some others, are given in the lists below.

For each (y,q) there are contributions from pairs of harmonic coefficients

C m nSim0ege lz0 +2 ,0 + ..4 and it is necessary to

include many ofthese if the orbit is of low inclination. The lists below give,

*for each (y,q), only the term with k. = Z 0 : the procedure for generating the

terms with higher 2. is summarized at the end of this section. In the lists,

*which now follow, we have written j 2explicitly (rather than as -1), to

..ndicate how the formulae run.

15:1 resonance 0= w + M + 15(il v

(y,q) = (1,0) B 15 F1 5 15 ,7G 1 5,7 ,0 (cot i - 15 cosec i)6?[jH exp jfl

(y,q) = (2,0) B 3 0 F3 0 30 ,1 4 G3 0,14 ,0 (2 cot i - 30 cosec i)tqfjH exp 2jo1

(y,q) - (3,0) B 4 5 4 5 4 5 ,2 1G 4 5,2 1 ,0 (3 cot i - 45 cosec i)61[jH exp 3jO]

(y,q) = (],-I) B 16 1615, G016,7, i(2 cot i - 15 cosec i)4tj 2 H exp j(t + w)]

and(],) B16 F16,15,8 G16,8, (0 - 15 cosec i)6?[j H exp j(4 - )

(y,q) = (2,-1) B31 F3  30 (3 cot i - 30 cosec 06~U 2H exp j(20 + w)1

and (2,1) B3 1 F 3 1 3 0,1 5 G31,15 ,1 (cot i -30 cosec i)6Z[j 2H exp j(20 - w)]

tn (y,q) - (1,-2) B1 5 F 5 5 6 G (3~ cot i -15 cosec i)6ZUH exp j01D + 2w)]

0

an (192)5, B58 F2G cot i -15 cosec i)63[jH exp j(0 - 2w)]

(y,q) = (2,-2) B 30QF3 0 30 13 G3 0 1 3,2 (4 cot i - 30 cosec i)6I[jH exp 2j(t + w)1

and (2,2) B 0F3,0!~n.-2(0 - 30 cosec i)61[jH exp 2j(O w)]
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14:1 resonance = w M+ 14( - v)

2
(y,q) - (1,0) B1F5 1,14,7G 1,7,0(cot i - 14 cosec i)6[j H exp j$]

(y,q) = (2,0) B2 8 2 8 ,28 ,13G28 ,13 ,0(2 cot i - 28 cosec i)6?fjH exp 2j1]

(y,q) - (1,-I) B4 4,14,62 cot i - 14 cosec i)6?[jH exp j(O + w))

141,4614,6,-1

and (1,1) B14F 14,14 ,7G 14,7,1(0 - 14 cosec i)d?[jH exp j(O - w)]

2

(y,q) - (2,-I) B29F29281G291_(3 cot i - 28 cosec i)6?[j2H exp j(2,P + O)]

and (2,1) B 29F 2 9 2 8 14 G2 9 14 1 (cot i - 28 cosec i)6[j H exp j(2(t - w)]

(y,q) - (1,-2) BIS 1i,14,6GIs,6,2 (3 cot i - 14 cosec i)[j 2H exp j(4 + 2)]

and (1,2) BIsF 1, 14 ,8G 15 ,8,2(- cot i - 14 cosec i) Hj2  exp j(' - 2w)]

16:1 -enonan," = w + H + 16(a - v)

(y,q) - (1,0) 17F 17, 16 ,8G 17 ,8,0(cot i - 16 cosec i)IR[j 2H exp jlI

(y,q) = (2,0) B32F3 2 ,32 ,15G 32 ,15 ,0 (2 cot i - 32 cosec i)G[jH exp 2j4]

(y,q) - (1,-I) B 616, 16 7G 6 7 1 (2 cot i - i6 cosea t)OJ JH

and (1,I) B16FI6, 16 ,8G 16 ,8,1( - 16 cosec i)6 [jH exp j(f - w)1

0
O
to
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29:2 resonance 0 - 2(w + M) + 29(0 - v)

61[2(Yq) = (,0) B3 0F 30 2 9 14 G3 0 14 0 (2 cot i - 29 cosec i) [j2H exp jO]

(yq) - (2,0) B58F5 8 ,58 ,2 7G58 ,2 7 ,0(4 cot i - 58 cosec i)6IjH exp 2jOI

(y,q) (I,-I) B29 F G29,29,13 G29,13,0 cot i - 29 cosec i)R[jH exp j( + w)]

i nd 29i 29,2993 29s3e-

and (,) B29 F2 9 ,29 14G29 , 14,1 (cot i - 29 cosec i)6?[jH exp j(O - 01

(y,q) = (2,-I) B5 9F 5 9 5 8 2 7 G5 9 ,2 7  (5 cot i - 58 cosec i)6[j2 H exp j(20 + w))

and (2,1) B5 9F 5 9 5 8 28 G5 9 2 8 1 (3 cot i ~ 58 cosec i)6RIj 2H exp j(2- w)1

2
(y,q) = (i,-2) B30F 3 0 29 13G30, 13 , 2 (4 cot i - 29 cosec i)d?[j H exp j(0 + 2w)I

2
and (1,2) B 30F 30,29,15G 30,15,2(0 - 29 cosec i)61[j H exp j(0 - 2w))

31:2 resonance 0 - 2(w + H) + 31(0 - v)

B 32 F32,31,15G32,15,0(2 cot i - 31 cosec i)C1j2H exp jo]

(y,q) - (2,0) B6 2F 62, 6 2 , 2 9 G6 2 , 2 9 ,0(4 cot i - 62 cosec i)t?[jH exp 2jO]

(y,q) = (1,-I) B 31F 31,31,14G 3 1,14 ,_l(3 cot i - 31 cosec i)IR[jH exp j( + w)]

and (1,1) B 31F 31,31,15G 31,15,1(cot i - 31 cosec i)6[jH exp j(O - )J

As stated at the beginning of this section, the lists give only the terms

for L - to , and there are additional terms for t - t0 + 2, t0 + 4, -to + 6, ...

These additional terms may easily be derived from equation (5) which may be

M rewritten as

0 di - (k cot i - m cosec i)B Ft pG pp [j t-m+ H. exp j(yO - qw)] ; (15)

I-,dt 9. 9.p .

here B I is given by (11), and the suffix km has been restored to H , which

is given by (12). For specified values of (a,B) and (y,q), the indices k and m

i1
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in equation (15) are constant, and it is helpful to gather the terms of degree

0"o to + 2, to + 4, into a 'lumped harmonic'. We write these lumped har-

monics as

-qk ,k- q,k q,ks
Cm Lqk- and S Qq- , (16)

where t increases in steps of 2 from its minimum permissible value, t0 I and

it is convenient always to take Qqk =I . Then we see, from equation (15),

that

Qq,k g£ Fimp Cpq (-1) . (17)

SF Ompo Gopo
q

The series of terms that arises is best indicated by an example: we choose

14:1 resonance and the term with (y,q) = (1,-I) , for which k = 2 from (6).

The contribution of this term to di/dt is given by

di sn1+) 2 -1,2
-2B 14F 4,14,6 4,6,l(7coseci-cot i) 14 sin(V+w)-S 14 cos(b + W) (18)dt 1 41, 46- I

where equation (13) establishes the terms in curly brackets and

_-,. 2  _ (R\ 2 1614, 7 '16, 7 ,  (RFI8,1 4  18,I -1
C14 f4,14-(a IF . 16,14 a - G C18,14

14,14,6 14,6,-1 14,14,6 14,6,-1

...... (19)
_q,k

and similarly for S . Explicit forms for other C may be found in Refs 11

and 12.

5 EXPLICIT FORMS FOR THE TERMS IN de/dt

If we introduce B, frm equation (II) and H from equation (12), the

expression (10) for de/dt becomes

c

de - '-1 e2  + l-2 ~ z M+-m+3
- BF (1 e)(k + q)(- e k}6?Ij- H exp j(v4. - qw)] . (20) M
dt kI.MP 9pq 0

00



On expanding in powers of e and replacing k by ya - q , we have

de BYF MPG pq e {q - je2(ya + 2q) + Ae4 yL + .. . ,61i Hexpj(y,-q w)] (21)
dt .mp9p e(c

In the explicit forms below we ignore terms that are O(e ) relative to the main
term. When q A 0 , the necessary correction factor is {1 - e2 (2 + a/q)+0(4

When q = 0 , the correction factor is 01 - le2 + 0(e 4)}. The expansion in
2

powers of e is very helpful because e < 0.01 for most of the orbits analysed.

For larger values of e , the unexpanded form can be used: the term in curly

brackets in (21) should then be replaced by (1 - e
2
){q + ya(1 - e

2) - ya}.

Again the lists give, for each (y,q), only the term with £ k 0 '

For a specified resonance, the terms with (y,q) = (1,-I) and (1,1) in

equation (21) are usually the most important for a low-eccentricity orbit

(e < 0.2). The terms next in importance are usually those with (y,q) = (2,-l)

and (2,1); the terms with (yq) = (1,-2) and (1,2) may also be significant when

e > 0.01

15:1 resonance V = w + M + 15(Q - v)

(y,q) = (1,-I) - B 16 i16,15,7G 1 6,7, 1 e- 16 [j2 H exp j(D + w)I

and (1,I) B16 F16, 15 , 8 G16,8,1 e- I[j 2 H exp j(d - w)]

(y,q) = (2,-[) -B31 F 31,30,14 G 31,14, le- [j 2 H exp j(24, + w)]

and (2,1) B31F31,3C,15G31,15,1e-I6[j2H exp j(20 - w)]

(y,q) - (3,-I) -B 466 G 1  d[j2 H exp j(3 + )]

(y,q) and (3,1) B46 F4 6 ,4 5 ,22G4 6 ,2 2 ,1e- Ifj
2 H exp j(34 - w)]

2
0 * Note that the coefficient of le , namely (ya + 2q), is equal to (k + 3 q),
00
O whereas (k + q) has been given (incorrectly) in several previous publications,
0beginning with Ret 13. The error is of no consequence, however, because the

term is used only when q 0 , and then both the correct and the incorrect
forms reduce to k
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(y.q) - (1,-2) -2B 15 i5, 15, 6 G15 , 6 , 2 e-13i[j- exp jVe + 2)]

- e "J exp j(b - 2w)]

and (1,2) 2BI 5F 15 ,15 ,8 G5,8,2

(y,q) (1,0) 1 B15 15 ,15 ,7G1 5 ,7,)eO[jH exp

(y,q) (2,0) _B 3 0 v 3 0 , 3 0 ,1 4 G3 0 ,1 4 ,0eE[jH exp 2jfl

(y,q) (2,-2) - 2 B 30 F 30 , 3 0,1 3G3 0,I 3 ,-2e d?(jE exp 2j(O + w))

- 2e-I6{[jH e~p 2j(4, - w)l

and (2,2) 2B30 F30 ,30
,15G30,15 ,2

e

14:1 resonance 
I = , + M + 1402 - V)

(',q) f (1,-1) -B14 Fi14,14 ,6(14 ,6
,e-1[i exp j(4 + 0)l

and (,) B14P1 4 ,14 ,7 G 14 ,7,1(e
6 11jii ep i(D -

(y,q) = (2,-1) B 29 i 29,28,13F29,13,_He-lIj2H exp J(2$ + w)]

and (2,1) B29 f2 9 ,2 8 ,14G 29 ,14 ,1e- I[j2H exp j(2$D - W)l

16:1 resonance

(y,q) (1,-I) -B16 F16 ,16 ,7 G16 ,7 ,-1le 
IH exp j(1 +

and (,0) B1 6 36 ,16 ,8 G 6 ,8 ,e- 16[jH eyp 3(0 - w)l

29:2 resonance 
= 2(, + bt) + 29 (Q - v)

(y~q - -9i2,,13 G29,13,l e-ltq[jii exp j(4b + w)l

(y,q) =(3,-I) B29F29,29,ZJ 2 , 3 ~eJ epj4

and (1,1) B2 9 F29 ,2 9 ,14G 2 9 ,14,1 e-6?[jH 
exp j( -)

4, 2 2(, + M) + 31(1 -00
31 2 resonance 

L

G -1 e- 6iRjH e j (O w

(y,q) - (1,-I) 3131,31,14G3 1, 1 4 , - e ep 4 w))

and (1,1) E31 3 1,3 1,1 5G 3 1,15 ,1e-I(jH exp j(4 - w))
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As with di/dt , the terms above are those for I k 0 the additional

terms, for 1 1 0 + 2, 1 + 4, to + 
6, ..., can best be expressed in terms of the

lumped harmonics defined in equations (16) and (17). Again it may be useful to

give an example: we choose 15:1 resonance and the terms with (y,q) - (2,1), for

which k = I from equation (6). The total contribution of this term to de/dt

is given by

de -B F G e-S sjn(20 - w) __cos(2 - w) (22)
dt 31 31,30,15 31,15,1 30 + C30 -

where equation (14) establishes the terms in curly brackets. In equation (22),

3 31,30 a FR F3'0IG33 ' 33,30 +$)G35,30
31,30,15G31,15,1 31,30,15 31,15,1

...... (23)

4nd similarly for C

6 EXPLICIT FORMS FOR THE INCLINATION FUNCTIONS

The inclination function F~mp is given by equation (8), but it is con-

venient to split this into two factors, the first being a series which is free of

large numerical values like (I + m)! , while the second is a single quantity that

provides an efficient combination of the various large values.

The first factor, introduced from Ref 9, is Ak (a function of i

which, for k <m , is given by equation (14) of Ref 9 as

Ak 2m( + )(k + )l L7 + k) - _ co 2t-m+k-2a

=m (2m) I (i +k) IS (I +C)k a -
C-0

X (sin ii)m-k+2 ,I ...... (24)

kwhere S = sin i and C - cos i . It is shown in Ref 9 that A satisfies

the recurrence relation )m

( - )(E - m)(. + k)A (2t -){.(. - l)C - -&)A

-( + m 1 )(1 k I)A k (25)1- ,
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for which (when k I m) the starting values are

-I k (2m + l)[(m + I)C - k) (26)

An+1m m+ I +(k

k
Thus can be found by substituting (26) into (25), with £ - m + 2 ; and

m;+2,.m

so on up the line. (Ref 9 also gives starting values for m < k , but these are

irrelevant here.)

We may now write

k kk

F "AkVk (27)
IMP Ain in

where Vk has a 'normalizing' role and, from (8) and (24), is given by
im

V k .. k)S ( + C) k 2(2 + "i -m) (28)
im 2 +m(k + m)! 1(X + k)] ! [I (I k)] !I ( +

The general form of the F functions is usefully clarified by the split
between V and A . From (26), A k is constant; k is linear in

AI

C (-cosi) and has one zero at C = k/(m+l) , which is quite near i = 900 if

kkk < m , as is usual; from (25), A is a quadratic in C , and generally has
k A;m+2,m

two zeros; A;+3,m  is a cubic in C , and usually has three zeros; and so on.

Thus the variation of Am with inclination becomes increasingly oscillatory as
in k

I increases. This oscillatory function is to be multiplied by Vim , in which

the term Sm -k . (sin i)m -k  dominates the variation with inclination if k C m.
n-k oWhen m is large, there is a strong maximum of S at i = 90 , with a rapid

decrease at lower inclinations.

This behaviour is illustrated by Figs I and 2 (taken from Ref 3) which show

the variations of some of the 9 with inclination, for 15th- and 16th-order

resonance. The dotted lines at i - 900 have been added to make it clear that

the curves are not symmetrical about i - 90 . More extensive diagrams for

15th order, up to L = 33 , have been given by Kloko'nik1 4 .

When I - m , there can be numerical problems associated with the computa-

tion of F . Methods for avoiding these problems are reviewed in Ref 1;.

From the recurrence relations (25) and (26), the values of the A k
-n

required for the F that occur in the lists of sections 4 and 5 are as o
Imp

follows.

_________________________________________________
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A -1A 2

15.15 30,30

A2 . 31(8C A 1) 0 = 31C
16 ,15  9 6,15

A 3 - 61(31C 3) A1  61(31C - 1)
31,30 34 31,30 32

A3  - I A 1 5 I
15,15 15

A -1 A 01
30,30 30,30

A1  29(15C - I) 2A = I
5,14 16 28,28

A2  - I A414
14,14 1

A3 . 57(29C - 3) A . 19(29C - 1)
29 ,28  32 29,28 10

A3 29(5C - 1) A 1 I 29(15C + 1)
15 ,14  6 15,14 14

A 33(17C - 1) A 2 1
17,16 18 32,32 '

2 -A 0
16,16 16,16

A 2 59(15C - 1) A4
30,29 16 58,58

3 A1
29,29 29,29

A5 117(59C - 5) A3 117(59C - 3)
5 9 ,58  64 59,58 62

0 4 59(30C -4) 0

A30,29 34 30,29

A2  63(32C -2) A4
32,31 34 A62,62

A3  A31,
31,31 1,31



16

7 EVALUATION OF G~pg

7.1 Accurate computation by quadrature

As explained in the Appendix, the best general expression for the eccen-

tricity function G 1pq is in terms of a definite integral, as

G Xpq= + =) exp j{kv - (k + q)M}dM , (29)
0

where v is the true anomaly and

a e cos v (30

r (30)

A Fortran program, GQUAD , to evaluate G from (29) has been written

by A.W. Odell, and a listing is included in the Appendix.

7.2 A truncated-series approximation, for small e

If e is small, it is possible to express Gpq as a power series in e
I p Iq Iq+2 jqj+4

the main term being of order e q I with smaller terms of order e , e

The expressions that arise are very involved, however, and it is not

easy to know how many terms are needed in a given application. What is fairly

easy is to derive a formula for the coefficient of e lq l in the leading term

(monomial) of GEpq : this monomial is itself expressible as a polynomial in the

constant ya . For a given application, the values of Gpq thus obtained can

be checked against those calculated from the integral (29) to assess the range of

validity of the truncated-series approximation.

From equations (59a) and (59b) of Ref 2, the required approximation for

GCpq ,written in terms of L, k and q , is

= ('4e) (-k -gq)' (I k) C(e q+2) if q >O

,_,., (-: :.) ,00
(31)

f(_ e)- q  (k + q)' (I + k+ O(e-q+2 if q 0
of (-q-

i[ r . . ...
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Notethatk +q -ya from equation (6). We now ignore the 0-terms and write

G as G, as a reminder of this omission. In most applications IqI < 2 and

equations (31) then give:

G 1 ,(32)

~ - ie(t - 2k + 1) (3

je(t + 2k + 01

a I p.- , e 2((t +I)( 1. + 4) - k(41. + ) + 1k 1 ( 4

6 kp* je 2{(t. + 1M( + 4) + k(41 + 9) + Ak24
For orbits of small eccentricity, all the G functions appearing in the lists

in sections 4 and 5 can be evaluated approximately by the use of equations (32) to

(34). A selection is given below, with the values of ye

=6je =8je (ye I16,7,-I 16,8,1

3114- 31,15,1

2 2
15,6,-2 161e 158, 29je (ye 1 )

30l3- - 75le
2  301, 131je2  (ye = 2)

1,,1 '5je 147, - 7je (ye = I)

G29,13,-I 1 2e G 91, = 16e (ye - 2)

3114- - 14e C3 1,15 ,1  - 16e (ye - 2)

Equation (33) shows that is of order Ite for Iqi I , and
Lpq2 2

equation (34) shows that G is of order it. e for jqj - 2 ,assumingkpq
I kI 4C I . These numerical values are crucial in assessing the likely importance

of terms in q - ±1 and q - ±2 . For example, if te > 2 ,these 'subsidiary

resonances' can be more important than the 'main resonance', as in Wagner's

analysis 16of Vanguard 3, for which t - 11 and e - 0.19
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To generate p for high values of q , it is best to use a recurrence
Lpq

relation. For q > 0 , it can be shown that

Gp {e(I + I + k)p + 2(k + I + 2k) pq (35)G1pq 4q k)G p~q-2 pq-

and, for q < 0 , that

Gtpq - 1e + I - k), + 2(1 + I - 2k)G, I (36)

1p 4 ,p,q+2 + ,p,q+l

The utility of a as an approximation to G is indicated in Figs 3 and 4,

in which G IG is plotted against e for selected values of (L.p,q). Fig 3
1pq 1pq

shows that 6 is useless as an approximation for large e . But for nearly all

the orbits analysed at resonance, e has been less than 0.01, and, as Fig 4 shows,

the use of G as an approximation for G is rarely in error by more than 1%.

As the observational errors in the values derived for the lumped harmonics are

3% or more, the use of 6 does not significantly degrade the accuracy of the

analyses.

7.3 An accurate recurrence relation for the Gjpg

As already indicated, the analytical derivations of the Hansen functions

are very involved, and these functions have been much studied (eg Refs 17 to 22).

It is largely because of this complexity that the power-series expansions are only

satisfactory for small e . A number of exact relationships between the functions

have been discovered, however, that are free of quadrature. One such relation,
20

given by Giacaglia , allows values of Gpq to be computed by recurrence from a
basic set of values. The relation is

G 12(k + q)G - (I- )e (G ,G
Gtpq 2k(-e21jq e 2)j 1 ,p-1,q-I-lgI

(37)*

The patterns of the suffixes is not immediately obvious in equation (37); the key

is that k + q has the same value for each of the four G functions. Since

k + q - ya in resonance analysis, the relation is directly applicable; however,

the 'basic values' still have to be computed, and this limits the usefulness of O

the relation.

*In Ref 20, (t -1)e is wrongly given as (t+ 1)e .We believe that the
correct formula was given earlier by P.J. Cefola.

___________________

__ _ _ _ _ _ __[_ _ _ _
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IThe G functions have simple closed-form expressions when k + q - 0 .

We can distinguish such G functions by suppressing the suffix p , so that (for

example) G-2,0 - (I - e2)_ and G3,1 " G 5/2 , whilst it

follows from equation (29) that G = 0 if I > 0 . Equation (37) now

reduces to

G (q -)e (G G (38)
Gq 2q(1 - e2) G-q-I G-lq+)

valid for q 0 0 . Taking t = 3 and q = ±1 confirms the expressions for

G 3, and G . already quoted, given G2,0 ' and leads on to

G4,2 = G 4,-2 .- ;e2(I - e 2)- 7 /2 etc.

8 COIMENTS ON THE NOTATION

Any attentive reader of this Report will have noticed a certain ambivalence

of notation over the indices p and k , one of which is always redundant,

because k + 2p = 2 . We regard k as the more useful of the parameters, for

two reasons. First, most formulae are simpler and more revealing in terms of

k . Second, k provides symmetries unattainable with p : in equation (4), for

example, could be replaced by , though with the caveat that the summation
p-o k=-L

is in steps of 2, that is, -1, - + 2, ... , 2 - 2, X

-k
Gpq (e) as G tq(e) . However, the use of Fm p and G pq has become so

widespread that it is now 'standard': this consideration, and the absence of a

recognized notation for surmation in steps of 2, deterred us from amending the

notation, though we have used the affix k with A and V in section 6.

There would also be some advantage in defining an extra symbol to represent

k + q , which arises in equations (20), (29) and (31). Here we have been able

to identify k + q with Ya ; but equations (29) and (31) are independent of

resonance and might benefit from the extra symbol.

Finally, we should draw attention to the fack that our definition of, and

notation for, the lumped harmonics C and S in equations (16) differs
m m

from that adopted by Kloko~nik in his extensive studies of resonance (see, for

example, Ref 24).

9 CONCLUDING SI MAR

In conclusion, it may be useful to summarize the main results presented in

this Report.
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Equations (5) and (10) give general expressions for the rates of change of

orbital inclination i and eccentricity e near resonance caused by a pertinent

pair of harmonics, in terms of the resonance angle 0 defined in equation (3),

and the functions F and G . Specific forms for the term of lowest degree k0

at the resonances most often encountered (15:1, 14:1, 16:1, 29:2 and 31:2) are

given in section 4 for di/dt and in section 5 for de/dt It is shown how

these terms can be combined with those of higher degree (Z = to + 2, to + 4, ... )

into a lumped harmonic, defined in equations (16) and (17).

The function F , which depends on inclination, is evaluated in section 6

by writing F = AV , where explicit expressions for A are derived from the

recurrence relation (25), and V is a normalizing constant given by (28). Figs I

and 2 give examples of the variation of F with inclination.

The function G , which depends on eccentricity, is most easily evaluated

from a definite integral, equation (29), and a Fortran program (GQUAD) written by

A.W. Odell for this purpose is listed in the Appendix. When e is small, a

series expansion of G is useful, and explicit forms are given for 6 (the

first term in the series) based on equation (31). Figs 3 and 4, which give the

variation of G/d with e , show that d , though useless as an approximation

when e is large, is accurate to 1% if e < 0.01 , as with most of the reson-

ances that have been analysed. The values of G , rather than G , have been

used in a new determination2 5 of harmonics of 15th order and 30th order: the

main effect is that the 15th-order coefficients of odd degree are altered by

about a quarter of a standard deviation, on average.

CC,
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Appendix

A FORTRAN-77 PROGRAM, GQUAD,.FOR COMPUTING G-FUNCTIONS BY QUADRATURE

A.1 Introductory remarks

As indicated in the main text, the functions of eccentricity, Gpq(e)

emanate from the classical Hansen functions, Xfn k ; these are defined such that
a

the true anomaly, v , can be related to the mean anomaly, M , by the expansion

() exp(jkv) x'(e) exp(joM) (A-I)J2  2(:r ee~kv

where I-(A-2)
a I + e cos A

Then the function G , as defined by Kaula 8 , is just Xn 'k with
£pq , -

n - - (t + I), k t I - 2p and a - k + q . As noted in section 8, there would

be advantages in writing G as GkIpq Lq
On multiplying both sides of equation (A-I) by exp{-j(k + q)M} and then

integrating from 0 to 2n , it follows that

Gpq I i cos(kv - (k + q)M} dM (A-3)

In equation (A-3) the true and mean anomalies, v and M , are linked by

the eccentric anomaly, E . Also, it is advantageous to integrate with respect

to E , rather than M ,if numerical quadrature is to be based on a uniform

dissection of the independent variable. But

SdE 1- e cos E - r (A-4)
dE a

so we can rewrite (A-3) as

C - ±pq = Z1cos{kv - (k + q)M) dE . (A-5)
L00 it J- f o

0

Here M is related to E by Kepler's equation, the derivative of which gave

(A-4), whilst v is related to E by the equation j
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tan !v \ !) tan JE ; (A-6)

finally a/r can be eliminated from (A-5) by using (A-4).

A.W. Odell has kindly provided a Fortran-77 program (in double precision)

that implements the definite integral (quadrature) expressed in equation (A-5).

This program, GQUAD, is listed in section A.Z. The basis Of Lhe program is the

uniform division of the interval (0,iT) into N sub-intervals, over each of which

the integral is computed from the four-strip Newton-Cotes formula,

b f(x) dx b -a + 32f+ + (A-7)

f 90 0 12f2  32f 3  7f 4 )
a

where f. = f~a + li(b - a)} for i = 0, 1, 2, 3, 4 . Equation (A-7) is exact
1

for polynomials of degree up to 5, so the error in quadrature by GQUAD is

O(1/N 
6
) . This can also be written 0(h

6
) , whcre h is the width of each strip

of a sub-interval (so that 4Nh = w) ; but here we are not dealing with poly-

nomials, and the convergence is much faster than this suggests.

The program requests the values of e, k, k and q as input, and then

operates in one of two possible modes. The normal mode finds a suitable value of

N automatically, by starting with N = 2 and then successively doubling it. In

this bisection process, successive estimates of the integral are compared until

6the value changes by less than I part in 10 . At this point the integral is

deemed to have 'converged', and its final value, together with the final value of

N , is printed; clearly, the value of N can only be a power of 2.

The alternative mode of operation requires N to be specified manually.

The mode is selected by attaching a negative sign to e , whereupon the program

requests that the value of N be supplied. Any even integer is now legitimate

for N , and there is only a single computation of the integral. In the computa-

tion, advantage is taken of a quasi-symmetry between E and 7 - E , such that

the quadrature routine appears to operate between 0 and 4Ir rather than between

0 and i . This is why N must be even in the alternative mode of operation:

it can then be halved to operate over the half-interval.

To provide examples of the manner in which Gpq €'iverges from ,

which is its value for e - 0 , the ratio of the two is plotted in Fig 3 for

various (k,X,q) when e ranges from 0 to 0.6. It is worth remarking that the

GQUAD output can be used to divine explicit terms, beyond 
0
tpq in the series

____
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in e 2for G .Thus, for two of the examples plotted, we have
Ipq

2 4
G 1570 -I+ 59e +0O(e)

and

G I + 75.5e 2+0O(e)4
17,8,0

For the other two, the numerical coefficients are not clean-cut; but,

approximately,

G067- 6.5e +245e 3+ 0(e)5

and

G14,7,1 7.5e + 222e 3+ 0 (e 5

Though the orbits analysed at resonance usually have e <0.01 , QUAD is valid
43

for large values of e :for example, it gives G1 5 ,7 0 (0.999) 0.312042 x 10

the value N 1024 being required.
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A.2 Listing of Program GQUAD

C PROGRAM' GQUAD FOR ECCENTRICITY FUNCTIONS
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON /CGECC/ E, GI, GJ, GK
EXTERNAL GECC
PARAMETER (PI=3.1415926535897932D0, HPI=O.5D0*PI, EPS=1D-6)

1 WRITE(l, *)'GIVE: E, K, L, Q'
READ(1, *)E, K, L, IQ
IF(E.GE.ID0) STOP
HMAX = PI/DMAX1(3D0, DABS(DFLOAT(K)), DABS(DFLOAT(IQ)))
GI = L
GJ = K
GK = K + IQ
IF (E.GT.ODO) THEN

G = QINTC(GECC, ODO, HPI, HMAX, EPS, N)/PI
ELSE
WRITE(1, *) 'GIVE: N (EVEN)'
READ (1,*) N
E =-E

G =QINT(GECC, 000, HPI, N/2)/PI
C (ONLY HALF N, BECAUSE QINT GOES ONLY TO HALF-PI)

END IF
WRITE(l, 2) G, N

2 FORMAT ('G IS', G20.12, I & N ISO, 16)
GO TO 1
END

DOUBLE PRECISION FUNCTION GECC(EE)
C COMPUTES INTEGRAND FOR ECCENTRICITY FUNCTION

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON /CGECC/ E, GI, GJ, GK
PARAMETER (PI = 3.1415926535B97932D0)
SQE = DSQRT((lD0 + E)/(IDO - E))
CEH = COS(EE*O.5D0)
SEH = SIN(EE*O.5D0)
CE = CEH*CEH - SEH*SEH
SE = 2D0*SEH*CEH
GECC = COS(2D0*GJ*DATAN2(SQE*SEH, CEH) - GK*(EE - E*SE))/

1 (100 - E*CE)**GI
GECC = COS(2D0*GJ*DATAN2(SQE*CEH, SEH) - GK*(PI - EE -E*SE))/

1 (iDO + E*CE)**GI + GECC
RETURN
END

c
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DOUBLE PRECISION FUNCTION QINTC(F, A, B, H4MAX, EPS, N2)
C INTEGRATES FUNCTION F FROM A TO B, BUILDING TO N (=N2/2)
C SUBINTERVALS BY BISECTION TO REFINE ACCURACY (EXACT FOR
C QUINTICS). PROCESS STOPS WHEN STRIP LENGTH LESS THAN
C H41MAX AND RELATIVE CHANGE IN INTEGRAL LESS THAN EPS.

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
H4 = B - A
SC = H4/45D0
S2 = (F(A) + F(B))*O.500
SI = F((A + B)*O.5D0)
N2 = 2

1 H2 = H4*O.5D0
H = H2*O.5D0
S = ODO
X A+ H
DO 2 I = 1, N2
S =F(X) + S

2 X =X + H2
Si Si + S2
QINTC = (16.*S + 6.*Si + 52) *SC

C TEST FOR CONVERGENCE
IF (N2.GT.2 .AND. DABS(H4).LE.H4MAX .AND. DABS(QINTC -QINTCO)

1 .LT.EPS*QINTCO) RETURN
QINTCO = QINTC
S2 = Si
Si = S
N2 = N2 + N2
H4 = H2
SC = SC*O.5D0
GO TO 1
END

DOUBLE PRECISION FUNCTION QINT(F, A, B, N)
C INTEGRATES A FUNCTION FROM A TO B USING N STEPS

IMPLICIT DOUBLE PRECISION (A-H, O-Z)
H =(B - A)/DFLOAT(N)
Hi = .25D0*H
H2 =Hi*2D0

H3 =H1*3DO

Cl =H*'7DO/90DO

C2 H*32D0/90D0
C3 =H*12D0/90D0

X=A
en FO=F(X)
co QINT = ODO
00 ~ DO 1 1=1, N

F4 = F(X + H)
QINT = QINT + Ci*(FO + F4) + C2*(F(X +HI) +F(X +H3))+

1 C3*F(X + H2)
FO = F4

1 X = A + DFLOAT(I)*H
RETURN
END
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